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Introduction

Permeation measurements using hollow cylinder apparatus
have frequently been analyzed by the solution of Fick's diffusion
equation in planar geometry. The error of the planar approximation
to hollow cylinder geometry have never been fully investigated.

In this report the solution of the diffusion equation for
hollow cylinder is derived. The results are compared with planar
geometry and the error range has been calculated,

Summary and Conclusion

1. The relative error in diffusivity calculated by a planar
treatment of data from hollow cylinder measurements is 0.65%
when the radius ratio is 0.6. The error increases as the ratio
decreases.

2. This error (0.65%) is far below normal experimental uncer-
tainty which is in the range of 3-5%.

Discussion

The solutions of Fick's law of diffusion have been studied ex-
tensively for various boundary conditions!™®. Permeation tests
are usually conducted by "Breakthrough" and "Pump-out' methods.
In the "Breakthrough' method, both sides of a sample are evacuated
initially. Applying a fixed pressure of gas on one side, the flow
rate is then measured on the other side of the sample nntll steady
state is reached. In the '"Pump-out' method one 51de of a sample
is under a fixed pressure and the other side is under vacuum. In
this case the flow rate of gas through the sample is at steady
state to begin with. Pumping out quickly on the high pressure side,
the flow rate is then measured repeatedly on the initially evacuated
side until the flow reaches a minimum value measurable.

The relative flow rate to that at steady state for hollow cylinder
geometry can be formulated as

_ b\ ¥ Jo (aog) Jo (bop) .
Y = -2 &n (a)nzl Joz(aan)-Jo (ban)exPE o Dt}

where 4 and b are inner and outer radius of hollow cylinder, respect-
ively, Jo is the bessel function “ of the first kind, D is diffusivity




and an‘s are the eigen values of the equation
“Jo (aty) Yo (bap) - Jo (bap) Yo {(aocy) =

The Yo is "Bessel function" of the second kind. For "Breakthrough"
experiments y is defined by

Te = T (+%
w8 RS

y = Js

and for "Pump-Out" it is

J {t)
Js

Js and J (t) are the flow rates at steady state and at time t,
respectively, The details of the derivation of the equations are
in Appendix A,

The planar geometry solution has

. = n 22
y plann = 2 I (-1) exp E_E_Q%
n=1 (b-a)

where (b-a) is the thickness of the sample.
The ratios of exponents in cylindrical and planar equations.
2
2 T°Dt
o me] 1 [kt

= (acxn)2 (b—a)

'nZTI-'Z a

are calculated for wvarious g-from 1.2 to 4 at n=1. The results

are listed in Table 1. The ratios are also calculated for various

n from 1 to 5 at a fixed value of B = 1.667. These are listed in
a

Table 2.

For large t the first term is sufficient to accurately estimate
¥y in the summation. For hollow cyllnders taking the first term only
and taking the logarithm

Lnrzz (2 Jo (aay) Jo (ba)]_ | 2p,
\a/ Jo (ao,)=Jo?(bay)] T

The observed slope [3&n y/3t], is [?2%%3%] = o2 Dcyl

fny =

Then diffusivity is

___1 | 8%my
Dcyl N 015 [Bt ]

Similar calculations for planar geometry give

fny _ wDt
ot BRIk




and

‘ n _ _(b-aj I-BJLn y_l
- “planar 2 L ot J

The diffusivity ratio for the two geometries is

DDIaDaI (ac1)? (b-a)?
= z

2
Dcyl m a
For b/a = 1.667, aa; is 4.69706 and the diffusivity ratio is

Dcyl = Dplanar/0'9935

The true diffusivity of a hollow cylinder should be about 0.65%
larger than the value calculated by assuming a planar geometry.

The asymptotic value of y is derived in detail in Appendix B,
and is given by

vk fak n n?1?Dt
yasym =2 k-1 L (=1)" exp B (b-a)?®
i Where k = b/a. For planar of which a and b go to infinity and
k approaches 1
- lim 1nk _ 1
k+1 k-1
and
Llim ycyl = Yplann

k+1




APPENDIX A

The solution of Diffusion Equation of Hollow Cylinder for
"Pump-out™ and "Breakthrough" cases.

The diffusion equation for the cylindrical coordinate is

_ll_a_c;:lic_l 3¢y 1 3% 3% o
Do rTor \' o) T TF 37 LT A-l

For the radial flow, the concentration is not a function of S}
and Z, At steady state, we have

aC
e = 0
A~2
_ 9 { 3cs)
= 3r \F Tor )
The solution of this equation is
€1 2n (b/r) + Ca2in (r/a)
Cs = ‘ -
an’ (b/a) A-2
- by boundary conditions
at r = a c=0C
- A=4
and at r = b € = C2
The flow rate at steady state Js is
Js = =2 Tr D(%—)
A-5
= 27D (Cg——C1)
in (b/a)
The general solution of equation A-1 for the radial flow? is
2 b
- 2 = Q (aa) ...ath
k1] n Jo n
C=— I v % e n Uo (ran)d/‘ rF(r) Uo(ra ) 4dr
2 n=1 Jo (aan) Jo (bun) ! A n
[+ o]
C on) = Ci1Jo (bop)isJ o
S {Cz JO(? E)_ ! o ( n?} 0.(a n) Do (ro.) - o % Dt
n=1 - Jo° {aon) = Jo (bap) e i
4 81 20 (b/r) + Cp n (r/a)

T (b/a) A=6




Where Jo is a Bessel of the first kind,

Uo (ra,) = Jo (ayr) Yo (b)) - Jo(a,b) Yo (anr) A-7
Uo (bap} = Uo (bog) = O A-8

Where Yo is Bessel function- of the second kind, F (r) is the
concentration of t=0, and a,'s are the solution of equation A-8.

For the "breakthrough case," the boundary conditions are

t =0 F(r) =0
t >0 C {(r=a) = C; =0 A-9
C (r=b) = C3

By the equation A-6, the concentration is

C2 In {1"1’3} C ; Jo2 (aan) U ( ) _anz Dt
¢ = wm T b2 - Jo* (acty) ~ JoZ(bo) 0 ira,Je
n=1
A-10
The flow rate is
J==21DTr 3
ar
C g Jo?(a 2
cEam D st hn? D § 2 20m)  -ma® Dt 2 Jo (bop)
~n \d/fay n=1 J0°{adq)-Jo=(bay) T Jo (adp)
z Jo (aodpn) Jo (bog) - o ?pt
=Js -4 1D C z L o A-11
2 n=1 Jo?(acn) - JoZ(bap) € n
or
©, 02
Js = J (t) - Jo (aop) Jo (bop) ~op 2Dt
— = - A-12
Js 2 n (b/a) “51 Jo (axp) - Jo (bay) ¢
For the "pump-out" case, the bondary conditions are:
= _ Ca &n (r/a)
. t=0F(r)=C¢Cs W
Ci =0 A-13
t >0 C{r=a) =C1 =0
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C, 2 {Jo(acn) gnb-Jo(bon) fn a}

b
- sz
JE tF (r) U (xrq )dr = TSy A renr U_ dr -

b
Cofn a

fn(b/a) on dr
a

A=14

= -] o f o
n :

0. fui.N T Y
X \Ds4a) (84 JO \dun)

=‘2 Cs
Ty
and
& Jo? (aap) 2
C = mCs z = -an

n=1 Jo? (a0y) - Jo? (ba,) ¢

The flow rate is

J = 2Wr-§s
ar
b Jo? (a
= 27D 7wC; I %n)

But

Ay \ .
r -55— is

n=1 Jo? (aoy,) - Jo? (bay,)

C,4n a 2 {Jo (aon-Jo (ban)}

Onih/a) vl Talan
wiay L1161

U dvg /s

A=-15

A-16

e 2 alp
e On“ Dt r (5;_> A=17

N (BUQ) __2 Jo (bon)
ar a ™ Jo (avp)
Then we have
o
2
J=1641C; I -39 (aoy) ‘fogg.ba“? e On” Dt
- a=1 J0° (aag) - JoZ(bay,)

or 2

J () o Jo (aap) Jo (bog) ~a, Dt

= =2 & (b/a) L

n=1 Jo?(aty,) - Jo2(bay,) ©

A-18

i
(Us]

A=20




This is the same as equation A-12, by combining equations A-12 and
A=20 we have '

_ ® Jo {acpn) Jo (bogp) -Ol.nz Dt
vy = 2 En (b/a)nzlJoz(aOLn) _ JOZ (bOLn) e A-21

where v = J (t)/Js for "pump-out" case

and y [Js « J (t)]/Js for the "breakthrough" case.

The plannar solution is known to be

b 2.2
y=-2 I D"exp | -2 Dt:[ A-22
n=1 :

where d = b-a,




APPENDIX B ASYMPTOTIC SOLUTION

For large x Jo (x) and Jo (x) are

Jo (x) fn% cos (x- %)

i in / I\
/TT-}TSI (xé)

The equation A-7 by this asymptotic

yo (x) "

Jo (x) yo (kx) - Jo (kx) yo (x) =0

2 1 . '
= E/-—-x_—- cos (x-%) snt(kx--li)-cos (kx-%)‘f‘,ln['x—%)
2 1
= T = sin ((k-l) x)

The solution is

= or
*n T k1
‘|D
where k = 2" And a, is by A-8
Xn
oan = —
a
Also we have

Jo (x) Jo (kxn) .

and

yassytn

-2 2ok I(~1)"

exp I:—

n? 7D

d2

i

i
o 4]




B§ comparison with A-22 we have

v = vic fnk _
asymp ( k=1 yplann) B-10

For the limiting case where k + 1, a and b go to infinity, the
cylindrical geometry approaches planar. By considering both the
relationship

[ JC. 0
X X

PR
oo L= B-11
and equation B-10
imy .. Lm v
ol cylin = ol asymp
=y B-12
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.7014
2702
.69706
.1230
.5485
.0244

TABLE 1

G;Z(B—a)z

m

0.99916
0.99587
0.59350
0.58820
0.97181
0.95693

[} ay? (b-a)z_J
- Sl

.00084
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. 00650
.01180
.02819
. 04307
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